Nuprl Definition : EOrderAxioms
11,40
postcript
pdf
EOrderAxioms(
E
;
pred?
;
info
)
== (
e
:
E
,
l
:IdLnk.
==
e'
:
E
==
(
e''
:
E
.
==
(
rcv?(
e''
))
==
(sender(
e''
) =
e
)
==
(link(
e''
) =
l
)
==
(((
e''
=
e'
)
e''
<
e'
)
(loc(
e'
) = destination(
l
)))))
==
(
e
,
e'
:
E
. (loc(
e
) = loc(
e'
))
(
pred?
(
e
) =
pred?
(
e'
))
(
e
=
e'
))
==
SWellFounded(pred!(
e
;
e'
))
==
(
e
:
E
. (
(
first(
e
)))
(loc(pred(
e
)) = loc(
e
)))
==
(
e
:
E
. (
rcv?(
e
))
(loc(sender(
e
)) = source(link(
e
))))
==
(
e
,
e'
:
E
.
==
(
rcv?(
e
))
(
rcv?(
e'
))
(link(
e
) = link(
e'
))
sender(
e
) < sender(
e'
)
e
<
e'
)
latex
clarification:
EOrderAxioms{i:l}
EOrderAxioms
(
E
;
pred?
;
info
)
== (
e
:
E
,
l
:IdLnk.
==
e'
:
E
==
(
e''
:
E
.
==
(
rcv?(
info
;
e''
))
==
(sender(
info
;
e''
) =
e
E
)
==
(link(
info
;
e''
) =
l
IdLnk)
==
(((
e''
=
e'
E
)
cless(
E
;
pred?
;
info
;
e''
;
e'
))
(loc(
info
;
e'
) = destination(
l
)
Id))))
==
(
e
:
E
,
e'
:
E
.
==
(loc(
info
;
e
) = loc(
info
;
e'
)
Id)
(
pred?
(
e
) =
pred?
(
e'
)
(
E
+ Unit))
(
e
=
e'
E
))
==
strongwellfounded(
E
;
e
,
e'
.pred!(
E
;
pred?
;
info
;
e
;
e'
))
==
(
e
:
E
. (
(
first(
pred?
;
e
)))
(loc(
info
;pred(
pred?
;
e
)) = loc(
info
;
e
)
Id))
==
(
e
:
E
. (
rcv?(
info
;
e
))
(loc(
info
;sender(
info
;
e
)) = source(link(
info
;
e
))
Id))
==
(
e
:
E
,
e'
:
E
.
==
(
rcv?(
info
;
e
))
==
(
rcv?(
info
;
e'
))
==
(link(
info
;
e
) = link(
info
;
e'
)
IdLnk)
==
cless(
E
;
pred?
;
info
;sender(
info
;
e
);sender(
info
;
e'
))
==
cless(
E
;
pred?
;
info
;
e
;
e'
))
latex
Definitions
x
:
A
.
B
(
x
)
,
P
Q
,
destination(
l
)
,
left
+
right
,
Unit
,
f
(
a
)
,
SWellFounded(
R
(
x
;
y
))
,
pred!(
e
;
e'
)
,
A
,
first(
e
)
,
pred(
e
)
,
P
Q
,
Id
,
loc(
e
)
,
source(
l
)
,
x
:
A
.
B
(
x
)
,
b
,
rcv?(
e
)
,
s
=
t
,
IdLnk
,
link(
e
)
,
P
Q
,
sender(
e
)
,
e
<
e'
FDL editor aliases
EOrderAxioms
origin